Free Boric Acid determination in Amine Borate reaction blends using solubility studies and 11B-NMR-spectroscopy

John Beliën, Michiel van Breemen, Johan Hooijman and Ton van der Kaaij
Quaker BV, Industrieweg 1 – 13, 1422 AH Uithoorn, The Netherlands

Introduction
In September 2008, the 30th Adaptation to Technical Progress (ATP) was published in the form of a directive that amends Annex I of the Dangerous Substances Directive 67/548/EEC. As such, Boric Acid (H_3BO_3) would be listed as Category 2 reproductive toxin with risk phrases R60 and R61 (“may impair fertility and/or may cause developmental toxicity in humans”). Annex I of Directive 67/548/EEC was, however, repealed by Annex VI of the Classification, Labeling and Packaging (CLP) Regulation (1272/2008). The 30th ATP did not, therefore, come into force from 1st June 2009, but proposed for the 1st ATP into the CLP Regulation. The provisions of this 1st ATP will have to be implemented, at the latest, by 1st December 2010. As a consequence, substances containing 5.5% Boric Acid or more will be classified as toxic to reproduction, category 1B (H360FD).

In November 2008, Quaker pre-registered several substances for REACh, amongst which a Mono Ethanolamine (MEA) Polyborate reaction salt. Based on new analysis techniques, the work described in this paper provides circumstantial evidence for the presence of less than 5.5% free Boric Acid ($H_3BO_3(aq)$) in: a) a model reaction blend of MEA, Boric Acid and water b) a standard semi-synthetic concentrate in which more than 5.5% of Boric Acid was incorporated.

Experimental
All experiments, including NMR spectroscopy, have been performed at 24°C (room temperature). All 11B NMR spectra have been recorded with a 300 MHz (300 DPX Bruker) spectrometer at Leiden University.

Results & discussion
Being a weak Lewis Acid, Boric Acid has the capacity to accept a hydroxide anion. The equilibrium between Boric Acid and its Boron oxo-anion is pH dependent with a pKa of 9.2:

\[
\text{H}_3\text{BO}_3(aq) + 2\text{H}_2\text{O} \leftrightarrow [\text{B(OH)}_4^-] + \text{H}_3\text{O}^+ + \text{H}_2\text{O} \quad [\text{eq. 1}]
\]

Depending on the concentration (> 0.025 M) and the pH, Polyborate anions are formed in the pH window of roughly 7 till 10 with the following net equations:

\[
\begin{align*}
3 \text{H}_3\text{BO}_3(aq) & \leftrightarrow [\text{B}_3\text{O}_3(\text{OH})_4^-] + \text{H}_2\text{O}^+ + \text{H}_2\text{O} \quad [\text{eq. 2}] \\
4 \text{H}_3\text{BO}_3(aq) & \leftrightarrow [\text{B}_4\text{O}_7^{2-}]_2 + 2\text{H}_2\text{O}^+ + 3 \text{H}_2\text{O} \quad [\text{eq. 3}]
\end{align*}
\]

Also other poly borate anions can be formed based on B3, B4, B5 configurations or even higher molecular weight (B8).

In presence of Mono Ethanolamine (MEA) the same reaction principles can be applied resulting in the following equations:

\[
\begin{align*}
\text{H}_3\text{BO}_3(aq) + \text{MEA} + \text{H}_2\text{O} & \leftrightarrow [\text{B(OH)}_4^- \text{[H-NCH}_2\text{CH}_2\text{OH]}^+] \quad [\text{eq. 4}] \\
3 \text{H}_3\text{BO}_3(aq) + \text{MEA} & \leftrightarrow [\text{B}_3\text{O}_3(\text{OH})_4^- \text{[H-NCH}_2\text{CH}_2\text{OH]}^+ + 2 \text{H}_2\text{O} \quad [\text{eq. 5}] \\
4 \text{H}_3\text{BO}_3(aq) + 2 \text{MEA} & \leftrightarrow [\text{B}_4\text{O}_7^{2-} \text{[2H-NCH}_2\text{CH}_2\text{OH]}^+] + 5 \text{H}_2\text{O} \quad [\text{eq. 6}]
\end{align*}
\]

With these reactions in mind, a model reaction blend of 35% (w/w) demin water, 18% MEA and 47% Boric Acid was prepared in order to have an initial base/acid molar ratio (1: 2.5) between equation 5 and 6. The result was a clear solution with a pH of 8.5. Since the maximum solubility of Boric Acid in water
is 5.1 grams/L (24°C), this was the first indication that a reaction salt must have been formed. As such, the model reaction blend, with its 35% of demin water, should contain less than 5.5% of free H_3BO_3 in solution.

The next step in this study was to find a more analytical way for free H_3BO_3 determination. The reactions described above, however, are to some extent, all equilibriums that shift easily during classic determinations like titration, extraction or Ion Chromatography (coupled to a mass spectrometer). In addition, the need for diluted samples will heavily influence the final determination. It was, therefore, decided to use 11B NMR spectroscopy, a technique where these types of molecules and equilibriums can be detected and do not change under the influence of the applied magnetic field.

In order to quantitatively detect the amount of H_3BO_3, a calibration curve was first set up for Boric Acid solutions in demineralised water without any (pH) adjustments. These solutions, with a pH ranging from 5.4 (0.25% H_3BO_3) to 3.5 (5.1% H_3BO_3 and over saturated), showed only one very sharp peak as shown for the 3.0% (w/w) solution in Figure 1.

The integrals of these peaks (chemical shift set on 0 ppm) plotted against the amount of Boric Acid (w/w %) showed an excellent linear correlation up to 5.09% (Figure 2). At higher concentrations, the integral does not increase since the maximum solubility was reached.

In the next step, the model reaction blend was determined in combination with an internal capillary - containing a separate 3% (w/w) Boric Acid solution - as external reference. The sharp reference peak at 0 ppm (H_3BO_3) was indeed visible (Figure 3), however, the presence of H_3BO_3 in the reaction blend could not be proven due to the large and broad peak. Several dilutions of this reaction blend were, therefore, determined. Figure 4 indicates that the curve of the pure solution is a combination of only two peaks, clearly without having an overlap with the H_3BO_3 peak at 0 ppm.

Figure 1 11B NMR spectrum of 3% Boric Acid in demineralized water
The evidence that the undiluted reaction blend hardly contains H\textsubscript{3}BO\textsubscript{3}(aq) is further supported by the observation that 0.5 extra equivalents Boric Acid (9.5%, w/w) can still be dissolved completely without giving precipitation. In addition, the H\textsubscript{3}BO\textsubscript{3}(aq) signal remained absent in the spectrum (Figure 5). Addition of 1 equivalent of Boric Acid, however, could not be dissolved completely anymore, but still did not introduce the H\textsubscript{3}BO\textsubscript{3}(aq) peak in measurements that were performed on part of the clear top layer.

In order to shift the equilibrium towards H\textsubscript{3}BO\textsubscript{3}(aq) or a sharper MEA Polyborate peak, the pH of the undiluted reaction blend was adjusted with a minimum of KOH or HCl solution as depicted in Figure 6. From this, it can be concluded that H\textsubscript{3}BO\textsubscript{3}(aq) is not present at pH 10, whereas the H\textsubscript{3}BO\textsubscript{3}(aq) peak is clearly present at pH 5.9.

Finally, a standard semi-synthetic Machining & Grinding concentrate was prepared where significantly more than 5.5% of Boric Acid was incorporated by means of the model reaction blend. Figure 7 shows a single peak – less broad than the model reaction blend - for this undiluted product. A separate sharp H\textsubscript{3}BO\textsubscript{3}(aq) peak is clearly not visible, indicating that a fully formulated Machining & Grinding fluid based on the incorporation of large amounts of Boric Acid does not necessarily lead to more than 5.5% free Boric Acid (H\textsubscript{3}BO\textsubscript{3}(aq)).

It has not been our purpose to identify and quantify every individual peak in the NMR spectra, however, several researchers have reported their findings on the qualitative (3D) characterization of Amine (Poly) Borates with other techniques like ¹H NMR spectroscopy and X-ray Crystallography3,4. Nevertheless, quantification of impure poly borates with these techniques still seems very difficult.

Figure 4 ¹B NMR overlap spectrum of model reaction blend and dilutions thereof

Figure 5 Effect of Boric Acid addition on ¹B NMR spectrum (overlap) of model reaction blend (undiluted)

Figure 6 Effect of pH on ¹B NMR spectrum (overlap) of model reaction blend (undiluted)

Figure 7 ¹B NMR spectrum of semi-synthetic coolant (concentrate)
Conclusion
The results of this study show that it is very difficult or even impossible to determine the exact amount of H_3BO_3 (aq) in undiluted reaction blends of MEA, Boric Acid and water. Summarizing all facts and measurements, however, it is concluded that there must be clearly less than 5.5% H_3BO_3 (aq) present in the model reaction blend. Based on the amount of H_3BO_3 (aq) being less than 5.5% in this reaction blend, it is reasonable to assume that this does not result in a classification toxic to reproduction from 1st December 2010. The (repro-) toxic properties of MEA Polyborates in solution, however, are not yet completely known and will be mapped in subsequent toxicological studies the coming years as part of the full REACH registration process.

References
1) Doome, R., Memo from the European Borates Association on the EU classification of Sodium Borates, Boric Acid and Boric Oxide, 19 May 2009
5) This study has been presented during meetings of the VSI/VKIS (November 2008), UKLA (January 2009) and UEIL (January 2009)

Acknowledgements
The authors wish to thank F. Lefeber (Leiden University) for his dedicated help during the 11B NMR measurements.

LINK
www.quakerchem.com